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ABSTRACT

A semi-empirical theory, used to predict buoyancy effects in a density-stratified and shear-driven flow,
is also applied to the case of a boundary layer with curvature. Curved flow data are available and inter-
esting in their own right since it can be seen that the Reynolds stress is reduced to zero at a critical
“curvature Richardson” number predicted reasonably well by the theory.

1. Introduction

In 1929 Prandt! wrote a paper citing the fact that
two somewhat analogous physical factors—buoyancy
and flow curvature—can profoundly influence tur-
bulence [and reinvented the nondimensional buoyancy
parameter defined by Richardson (1920, 1925)]. Using
his mixing length approach one can arrive at a heuristic
idea of why flow with a normal pressure gradient related
to gravity or a centrifugal field are stable or unstable.
Later, Bradshaw (1969) appealed to this analogy to
transfer stratified experimental correlations, as under-
stood then, to the curved, centrifugal flow case.

So and Mellor (1972) presented data and the results
of a turbulence model based primarily on hypotheses by
Rotta (1951) and Kolmogorov (1941) applied to the
curvature effect. The model neglected advection and
diffusion terms in the turbulent moment equations; this
simplification results in algebraic expressions for the
effect of curvature, Donaldson (1973) similarly simpli-
fied his model and applied it to density stratified flow
as well as curved flow. However, his assumption for
dissipation did not adhere to Kolmogorov’s hypothesis
of small-scale isotropy (Corrsin, 1973) and apparently
is the reason his results are in disagreement with
existing data; for example, he obtained a critical
Richardson number of 1.64 instead of 0.22 in the
stratified flow case.

Mellor (1973 ; henceforth referred to as paper I) pre-
sented the results of his turbulence model; then sim-
plified it by neglect of advection and diffusion and
compared the result to the (constant flux) near surface,
atmospheric boundary layer data of Businger e al.
(1971). Agreement with the data was quite good. A
similar result was also presented by Lewellen and Teske

1 Supported by the U. S. Air Force Office of Scientific Research
under Grant AFOSR 75-2756 and by the Geophysical Fluid
Dynamics Laboratory under Grant 04-3-022-33.

(1973) who included turbulent diffusion but not
advection. Their model was an extension of Donaldson’s
model, but correctly applied Kolmogorov’s hypothesis.

Mellor and Yamada (1974 ; henceforth referred to as
paper IT) reexamined paper I and attached a “Level 4”
label to the original complex of equations which calls
for the simultaneous solution of differential equations
for six turbulent stress components, three heat flux
components and temperature variance, in addition to
the mean equations.

Identification of a small parameter related to de-
partures from isotropy suggested a systematic process
by which terms in these equations could be neglected.
Thus, the Level 3 model eliminated all but two differ-
ential equations for turbulent energy and temperature
variance; the remaining information was reduced to
algebraic form. The Level 2 model reduced all of the
turbulent moment equations to algebraic equations
and is identical to that which was ultimately applied
to the surface atmospheric data in paper I; now, how-
ever, from the derivation in paper IT the Level 2 model
need not be constrained to the near-surface layers, but
is generalized to three-dimensional flow and is con-
sidered an approximation to the Level 4 model across
the entire boundary layer. The result is a simple closed
expression for the stabilizing or destabilizing effect of
buoyancy as expressed through the Richardson number.

The purpose of this paper is to bring together in a
common format pieces of information which heretofore
have been disconnected, and we do so on the basis of
the simplest (Level 2) model which, it appears, contains
the essential ingredients of the other more complicated
models.?

2In our most recent atmospheric boundary layer numerical
simulations (not yet published), we have chosen the Level 3
model. The underlying conceptual simplicity of the Level 2 model
has been important in the success of these simulations, however.
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In the density-stratified, near-surface layer case, the
Level 2model and data indicated a local flux Richardson
number of 0.21, or gradient Richardson number of 0.22
beyond which turbulence could not exist.? In the
curvature data to be reviewed here a critical “curvature
Richardson” number of about 0.23 is obtained whereas
the model predicts 0.185 (adding diffusion as in the
Level 3 or 4 models would increase this value). What is
important about these data is that, unlike the available
atmospheric data, one has a clear observation of the
rather abrupt extinction of the Reynolds stress in the
middle of the layer where the velocity gradient is non-
zero but where the Richardson number is 0.23. Pre-
sumably, atmospheric data, if they could be obtained
under controlled laboratory conditions, would exhibit
the same behavior. The data are also important because
they demonstrate the power of the turbulence model
in predicting the most salient feature of two seemingly
disparate flow situations. Note that the model does
contain some adjustable constants, two of which are
inoperative in the curvature case. However, these have
been fixed once and for all from neutral flow data.

2. Review of the model equations and their
application to density-stratified layers

We define the mean velocity U;= (U,V,W); © is the
potential temperature ; #:2; and 28 the Reynolds stress
and heat flux; ¢?=u,?; and 6? is the temperature vari-
ance; ge= (0,0, —g) is the gravity vector; and g is the
coefficient of thermal expansion. From the Level 2
model of paper II, the equations are*
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3 Miles (1961), following the work of Taylor (1931) and Gold-
stein (1931), showed that Ri>§ everywhere in the flow field is a
sufficient condition for the stability of a flow subject to small
perturbations.

4 In paper II, Egs. (25), (26), (27) and (28).
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where l1= Al, l2= Al, A1= Bll, A2= Bgl and (A,Bl,Bg,C)
= (0.78, 15.0, 8.0, 0.056). As noted in paper I, only
three of these constants are independent and have been
determined from neutral turbulent flow data. The
constraining relation is Bi¥=A4 (B1—64 —3B,C).

In paper II Eqs. (1)-(4) were first simplified by the
boundary layer approximation. The result® can then be
presented in a number of forms. If we choose a conven-
tional K-theory format, we obtain

wu SudU/dz
— AUN? 7oV \27}
— | wv =12|:<——> +(—):| SudV/oz|, (5a,b,c)
— Jz 0z
w0 Spd®/oz
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and where y1=(3)—2(4/B1), v2= (B:/B1)+6(4/By),
and the flux Richardson number is conventionally de-
fined as the ratio of negative buoyant production to
the shear production:

Bg wb
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is the ratio of negative buoyancy production to total
production. Expressions can also be obtained for the
other components of the Reynold stress and heat flux
tensors. Note that the gradient Richardson number is
given by

Bgo®/ 3z

= U/ 32)*4(0V/ 32)?

Sw
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The functions Sy and S are plotted as functions of
R; in Fig. 1. In paper I, these functions, reinterpreted
somewhat,® have been compared with the constant flux

% In paper 11, Egs. (52a, b, ¢) with the diffusion terms eliminated
and Egs. (53a, b, c) and (54a, b, ¢).

¢In the constant flux layer, we let I=xsz, —w_u=u,2, —w=0

and —wf=H. We define em=xzu (U /92), eu=«zuH"

X (8©/92) and {=z/L, where L=u3(xgBH)™" is the Monin-
Obukhov length scale. It is then easy to show that gy=Sx3%
e =SutSu! and { = gy R;. The data were presented in the form
ene () and on (§).
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data of Businger ef al. (1971) where we had set I=«a.
The comparison was quite favorable. A flux Richardson
number of 0.21 or gradient Richardson number of 0.22
beyond which turbulence is extinguished is the salient
result of both the model and the data.

3. The curvature data and theory

Fig. 2 illustrates the flow bounded by a curved surface
and potential flow.

If we now return to Eqgs. (1) and (2), write these
equations in curvilinear form, and then make the
boundary layer approximation, we obtain

q3 _'_aU _U
—= —wu—-+tuw—, (8)
A; adz 7
w (1 —49U/dz— 8U/r
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We now note that the flux Richardson number, defined

in (7a), can be interpreted as the ratio of the negative
buoyant production term in the vertical component of
turbulent energy equation to the sum of the shear

F1c. 1. The buoyancy stability functions Sy and Sg vs Ry.
The inset is a detail near R;=0. The dashed lines are given by
Su=1.0—35.57R; and Sy =1.35(1.0—35.81Ry).
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F1G. 2. The two-dimensional boundary layer
flow over a curved wall.

production terms in the horizontal components.” In the
case of curvature, this suggests that we also define a
curvature Richardson in analogous fashion so that

20/ 2U
Ri=——= . (10)
u Uu 9
—+— —(Ur)
dz r 02

Then Egs. (8) and (9a—d) can be solved for any com-
ponent of the Reynolds stress. In particular, —uw can
be obtained in the form

U U

dz 7

—uw=1[?

<6U U (1)

———)SC(RJ,

0z 7

(note that dU/dz—U/r is the shear strain whereas
dU/dz+ U/r is the vorticity) where

5[ 1

The function S.(R.), is plotted in Fig. 3. From (12) one
obtains S.=0 when R,=0.185, and again at R,= 5.416.
Within the region, 0.185 <R, < 5.416, we assume S,=0;
otherwise the combination of (8), (11) and (12) would
vield negative turbulent kinetic energies. It will be
noted that flat plate flow corresponds to R,=0, poten-
tial curved flow to R~z «, and solid-body rotation
(as in the eye of a tornadoe or hurricane?) to R.=1.0.
As described by So and Mellor (1973), a two-
dimensional boundary layer was established on a flat
surface and was then made to flow over a curved wall
whose radius of curvature was around 30 cm (and

364,2 R, P
e kT

Bt (1—-R,)?

7To see this, (9a,b, c) might better have been written in the
form

(g/W) 0?1 (/300 [1,1,1]= —2(¢*/A)[1,1,1]
—6uwdU/az+U [y, —2U [r, 0].

Elimination of the second term on the right, using (8), yields

(9a, b, c). The form of (9a, b, ¢}, however, has the advantage that

the full differential equation may replace (8) in the alternate
Level 3 scheme of paper II. .
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F1c. 3. The curvature stability function S; vs R..

varied slightly along the flow path). Some of the mean
profiles, first on the flat surface and then on the curved
section, are shown in Fig. 4. As z—w, U~U,u(R/7)
= U pu(1—2R™1) which is the potential flow profile; U,
is the potential flow wall velocity and R is the radius
of curvature. The transition from flat to curved flow
occurred at £=122 cm, and at this point the profile
looks very much like the profile at x=62 cm. The

Reynolds stress #w has been measured and is also shown
in Fig. 4. Other data are available in the original paper.

Focussing attention on the x=180 cm profiles, the
dramatic decrease in Reynold stress compared to the
flat plate case is easily seen;at 2/6~0.45 the Reynolds
stress is essentially zero.

In the application of this closure model it has thus far
been assumed—successfully it appears—that the length

scale I needed in (Sa, b, ¢} or (11) may be modeled in
identical fashion to neutral layers. Near a surface it is
then possible to let I~«kz as z— 0. For large z, a more
elaborate empirical function, I(z), is required. In the
case of the atmospheric boundary layer' theory, data
comparison of paper I, all of the data were indeed col-
lected close to the surface where I=«z was appropriate.

For the data of Fig. 4 the points close to the surface
have a well-defined, classical logarithmic behavior (see
So and Mellor, 1973), where R,<0.01. Together with
I=kz Eq. (11) implies an experimental determination,
Se=~1.0, for very small R, and this datum has been
entered into Fig. 3.

From the x= 180 cm profile, at 2/6=0.45, we calculate

R,=0.23. At this point we observe ww=0 so that, inde-
pendent of /, we obtain the experimental value, S,=0.

X=62cm
1.5+ 1.5
1+ 1
/8 N o
S K .5 o
O
o ‘Q o
& £ ) §
’ e
(o)
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0 5 | . 0 0 .001
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Fic. 4. Non-dimensional velocity and Reynold stress profiles from So and Mellor (1973). When
%< 122 cm, the flow is over a flat surface whereas the surface is curved when x>122 cm. At x=62 cm,
6=1.40 cm; when x=122-180 cm, d=constant=2.41 cm.
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For 2/6>0.45 and R,>0.23 more data could be inserted
in Fig. 3 but would also yield S,~0. Somewhere around
3/6~1, R, increases rapidly so that .S,>0 according to
our prediction. However, then the square of the shear
strain and the Reynolds stress in (11) are very small.

For the region 0<3z/6<0.45, the data yields
1.0>.5.>0; however, to evaluate experimental values of
S, one would have to specify a more elaborate I(z)
other than that appropriate to near-surface flow. In
this paper, we avoid this elaboration.

For the =170 cm profile at z/62:0.42 we estimate
R,=~0.32 whereas for x= 150 cm the Reynolds stress is
not zero until /5~ 1.0 although it is greatly surpressed
when 2/6~0.40. Our interpretation is that these syste-
matic upstream departures from the predicted critical
value, R,=0.185, might be attributed to the neglect of
turbulent advection and diffusion which would be
included in the Level 3 or 4 models of paper II. We
hope to show this in the future. However, it is believed
that this simple discussion, based on the more simple
Level 2 model, is persuasive.
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